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A monotonic conserva t ive  f in i te -d i f fe rence  scheme  of s e c o n d - o r d e r  accu racy  is  p roposed  
for  the numer i ca l  invest igat ion of nonsteady the rmoconvec t ive  p r o c e s s e s .  

In the compute r  modeling of nonsteady the rmoconvec t ive  p r o c e s s e s ,  the choice of the numer ica l  scheme  
mus t  sa t i s fy  ve ry  s t r ingent  r equ i r emen t s .  Since the solution, as a ru le ,  mus t  be obtained ove r  a long in te rva l  
of t ime ,  i t  is ve ry  impor tan t  to choose a n u m e r i c a l  a lgor i thm that  allows the calculat ion to be c a r r i e d  out with 
a la rge  t ime  s tep .  Also,  to ensure  a high accu racy  of the solution,  the difference scheme  mus t  be of a high 
o r d e r  of approx imat ion ,  not only with r e s pec t  to the space  p a r a m e t e r s  of the g r id ,  but also with r e spec t  to 
the t ime  step.  

In o r d e r  to p reven t  osci l la t ions  of the solution during the calculat ion p r o c e s s ,  the difference scheme 
mus t  be monotonic.  F inal ly ,  the d i f ference  scheme  mus t  p rope r ly  re f lec t  those physica l  laws which underl ie  
the ini t ial  d i f ferent ia l  equations,  i . e . ,  i t  mus t  be conse rva t ive .  

In numer i ca l  invest igat ions of the rmoconvec t ive  p r o c e s s e s  it is  usual  to s t a r t  f r o m  the Boussinesq 
hypothesis  [1, 2] and to cons ider  a s y s t e m  of equations in the eddy veloci ty  ~0, the cu r r en t  function r and the 
t e m p e r a t u r e  0; in plane Car tes ian  coord ina tes ,  this s y s t e m  takes  the d imens ionless  fo rm 
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Here  u and v a r e  the x and y components  of the veloci ty  vec tor ;  t is the t ime .  F o r  dis tance the sca le  L was 
taken; for  t e m p e r a t u r e ,  AT; fo r  veloci ty ,  v /L ;  for  t ime ,  L2/v. Both the Prandt l  number  P r  = ~ / n  and the 
Grashof  number  of Gr  = g/SLSAT/~ 2 appear  in Eqs .  (1)-(3) (g is the acce le ra t ion  due to gravi ty ;  fi is  the t h e r -  
ma l -expans ion  coefficient;  ~ is  the kinemat ic  v iscos i ty ;  n is the t h e r m a l  corlduetivity). 

The s y s t e m  in Eqs.  (1)-(3) has a solution within a c losed region G for  definite ini t ial  and boundary condi-  
t ions de te rmined  by the specif ic  formula t ion  of the phys ica l  p rob l em.  At solid i m p e r m e a b l e  boundar ies ,  for  
example ,  the re  is the adhesion condition 

= 0 ,  a~ = 0. (4) 
On 

F o r  the t e m p e r a t u r e ,  conditions of the f i r s t ,  second,  and tbArd kinds may be given,  and there  also junction 
condit ions.  The boundary condition for  turbulence is a m o r e  complex  problem:  It  cannot be e x p r e s s e d  in ex-  
pl ici t  f o r m  and is  sa t i s f ied  approx imate ly  in the cour se  of the calculat ion.  

It mus t  be said that those approaches  to de te rmin ing  the turbulence at the boundary which, until  r ecen t ly ,  
were  un ive r sa l  in computing p rac t i ce  led to s ignif icant  l imitat ions on the s tabi l i ty  and made the application of 
an economica l  f r ac t i ona l - s t ep  scheme  to the solution of Eqs.  (1)-(4) la rge ly  ineffect ive.  Recent ly ,  holdover, a 
p rocedure  for  calculat ing the turbulence boundary condition that  g ives  cons iderably  improved  accu racy  of the 
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computational  p rocess  was proposed [3]. This method significantly inc reases  the efficiency of inexplicit  
d i f ference  schemes  of va r iab le -d i rec t ion  type,  and allows them to be used to solve problems of convective 
heat t r a n s f e r  [4]. 

The distinguishing fea ture  of the proposed numer ica l  scheme is that ,  being of s econd-o rde r  accuracy ,  
i t  is monotonic and conserva t ive ,  and allows calculat ions to be ca r r i ed  out with T ~ h. Also,  the t ime step 
is chosen automatical ly in the course  of the calculat ion in such a way as to ensure  the stabil i ty of the computa-  
t ional  p r o c e s s .  

The di f ference scheme was obtained by using, in a longitudinal-~transverse scheme ,  the monotonic ap-  
proximat ion proposed in [5]. Conservat ive  p roper t i e s  of the scheme were ensured  by using the method p ro -  
posed in [6] fo r  the const ruct ion of a s teady monotonic conservat ive  scheme of s econd-o rde r  accuracy .  

F o r  the model  equation 

0o 0(1  0o ~ 
o-5-= o-7 " ox N 

(where p = const) ,  the di f ference scheme has the genera l  fo rm"  

- -  '.~ = A~(~ + A~O" + [ . + , / 2  , 
"r/2 

~,i - -  ~ A ~  + + �9 
~/2 

(6) 

The di f ference  opera to r s  A x and Ay, approximating the opera to r s  Lx~ = (O/Ox)[(1/p)(O~/Ox) - -  u~] and 
Ly~ = (0/3y)[( l /p)(0r  - -v~] ,  r espec t ive ly ,  a re  obtained by integrat ing the la t te r  opera tors  over  the e le -  
menta ry  volumes vi(xi-~/2 -< x -< x i~ /2 ;  Yj-~/2 -< Y -< Yj+~/2; tn - t _ tn+~), and using the Ostrogradski i  formula .  
F o r  example,�9 the opera to r  Ax~n is 

n On.. On (i)n \ I (Di+1.1 - -  ,., i . ] - -  ~-~,] | 
A~O"= p---~- 1 +Ri+,,'_o 1-~Rt--I/2 ] 
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+ t-~/2,i 2h ~-~/2 i (i)n~_~,i+ ~-l/2.i 2h t-1/2.i (l)~,~ 

. .  11n-~l/2 Un~, I /2 _ _  bln-}-l/2 
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0.5phluln~+~//2 j l i s _ . . _  the Reynolds di f ference number .  The opera to r  Ay~ n is writ ten analogously.  where P~/2 
[ un+l~ 2 vn+l/2. The t e r m s  i~ l /2 , j '  - i , j ~ / 2  a r e  calculated using the mean values 

u,,+~/~ = 1 . ,,+~ ,,,,,+~ ~+~ ,, ~,, .~ " 
~ i , ]+I  Vi - - I  , / - - I  i,]--I i ,]+I 
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To solve Eq. (2) in each t ime l aye r ,  a va r iab le -d i rec t ion  i te ra t ional  scheme is used 

- -  s (~ - -  L S r ~i,i + y (~'~'~ -r ~-yy + ~ + ~  "t'i, J 1, 

r 

(8) 

(9) 

i,1 ~ ", T xx - -yy  

Here  ~ is the i te ra t ional  pa rame te r ;  s is the number  of the i terat ion;  r and ~Tv a re  symmet r i c  th ree-po in t  
d i f ference  ope ra to r s  approximating the der iva t ives  a2~/0x 2 and a2r 2, respec~t[vely. 

The calculat ional  p rocess  fo r  determining 0P +l ^n+l r f rom the known values of these pa rame te r s  
i , j  ' ~ i , j  ' i , j  

at the n-th t ime level  is cons t ructed  as follows. F i r s t ,  f rom the dif ference analog of Eq. (3), the value 0n+t 
is  de termined;  ~bn is taken as the init ial  approximation for  ~n+t,0 in Eq. (8). Then Eq. (1) is solved in th~ ' j  
region G1E G, the boundary of which di f fers  f rom that of G by one step of the gr id .  The value of on+l on the �9 �9 ~ i , j  
boundary of Gt is calculated f rom the d i f ference  equation 
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q)n+l  _ _  ~ n + l  n+~ 
i.i = :~-~ - -  ~_~7. " (lO) 

Inside G 1 the value of m+l  is determined f rom the difference analog of Eq. (1). wi,j 

Next, by means of the i terat ional  p rocess  in Eq. (9), tn+l  is found inside the main region G; at bound- 
a ry  points of the difference gr id ,  the value of ~b is co r rec ted  sb ~ as to sat isfy the boundary conditions for ~ and 
a t / an .  Fo r  example,  if the adherence condition ~ = ar  = 0 is given at the boundary, then in using a uni- 
direct ional  three-point  approximation of s econd-o rde r  accuracy  

( 0~1 = - -3%+4g~1--~2  + 0 ( h  e ) (11) 
/ o 2h 

it is usual  to take 

% = 0, ~1 = 0.25~2. (12) 

To refine the values of O n + :  - n+ 1 ~n+l oh~n~r~ ~n 1,] ' ~0i " " ~i . . . . . . . . . .  , -.. external  i terat ional  cycle is constructed.  Thus, ,] ,] 
the numer ica l  a lgori thm includes two i terat ional  cycles:  the internal and the external .  The internal cycle is 
te rminated by the condition 

/nax ~'/- - ~a~ (la) 
~,i ~7,)  ~ 

The external  cycle includes the success ive  solution of all the equations of the sys tem in gqs .  (1)-(3) tmtil the 
inequality 

i q:+~ :t*~ - -  qo:'+~ : '  [ 
max ~'] ' i.: 

i , j  - - i , j  " 

where s l  is the number of the external  i terat ion,  is no longer satisfied.  Of course ,  a s imi la r  inequality must  
be sat isf ied for  the function 0. However, numer ica l  experiments  show that the rate of convergence of 0 is 
usually higher than that of ~o, and therefore  it is reasonable to assume that when Eq. (14) is satisfied the anal- 
ogous inequality for  0 will also be satisfied.  

Experience of calculations shows that for  Ra = PrGr~<104 it is expedient to set  at  ~ 0.01 and e~v ~ 0.05. 
F o r  sma l l e r  er and e~v, the t ime required for  the calculation inc reases  sharply,  although the solution is p r a c -  
t ically unchanged; f o r  l a rge r  values,  the solution is found to osci l la te  in the fourth-fif th step. For  Ra > 104, 
it is bet ter  to take e~ N 0.005 and e~o ~ 0.01. 

The machine t ime required for  the calculation depends significantly on the choice of the i terat ional  parar. 1 
e ter  a. In the course  of numerical  experiments ,  it wus established that the optimal value of cr may be rough- 
ly calculated f rom the formula  e = h /5 .  With this choice of % the required accuracy  er is reached af ter  5-10 
i tera t ions .  It would obviously be more  expedient to choose i terat ional  pa ramete r s  optimized according to 
Jordan [7, 8], but this choice was not made in the present  investigations.  

It is s imple to establish that for  Ri• < 1 the proposed numer ica l  scheme approximates the initial s y s -  
tem of differential  equations in Eqs.  (1)-(3) with o rder  0@ 2 + h2). By summation of the difference equations 
over  all the points of the calculational gr id ,  it may be established that the scheme is conservat ive .  

The sys tems  of difference equations at each of the stages of the calculational p rocess  are  solved by t r ia l  
and e r r o r .  The stabil i ty of this method is ensured if 

2 [ t i n + l / 2  _ _  ttrz--i /2 72n+1/2  _ _  ~ n + l / 2  

-7- >/max i i-,/2,/ h ~+l,:~_,: , ~,:-t:_ h i,:-:-t/z } . (15) 

The absence in Eq. (15) of res t r ic t ions  on the spatial  pa ramete r s  of the gr id  implies that the difference 
scheme is monotonic. Numerica l  exper iments  confirm that the scheme remains  monotonic for vahms of Ra up 
to 10 l~ and above. 

The stability of the var iab le-d i rec t ion  scheme in Eq. (6), under the condition of negative deterrrdnacy 
of the opera tors  A x and Ay, may be proven using Kellog's  lemma [9]. In the case under consideration, negative 
de terminacy of the opera tors  is ensured when Eq. (15) is sat isf ied.  Hence, the scheme is Stable for each of 
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the equations taken individually. However,  cer ta in  l imitations a re  imposed on r because of the approxima-  
tion in the boundary conditions for  turbulence,  which are  refined at each t ime layer .  If too large a value of 
T is taken, the i terat ions  may diverge even when Eq. (15) is satisfied.  This is evidently because the region 
of convergence in the considered i terat ional  p rocess  is too small :  F o r  large  T the initial approximation, usual-  
ly taken as the value of the function at the previous t ime level,  does not fall within this region,  and the p r o -  
cess  d iverges .  To prevent  the divergence of the i terat ional  p rocess  it is neces sa ry  to reduce r .  

Experience of calculat ions shows that the convergence of the external  i terat ion is much improved by 
smoothing out the boundary condition for  turbulence,  i , e . ,  by writing 

~+1,~1+1 = (I -- ~l)'~+ l .sl + ~r .~:+l, (16) 

where ~ is the smoothing pa rame te r .  The optimal value of ~ depends on the conditions of the problem and is 
close to 0.85 for  Ra ~106 ;  this is in good agreement  with the resul ts  of [10], where a s imi la r  smoothing is 
used.  

At this point, i t  is perhaps appropriate  to point out that,  since the boundary condition for the turbulence 
is unsteady,  the matching condition on the intermediate  layer  mus t  be sat isf ied,  i . e . ,  in this case 

= 2 ,vl ~ Ay(~7§ --~?). (17) 

Violation of Eq. (17) leads to an inc rease  in the machine t ime for the calculation by approximately 20%. Of 
course ,  the same condition must  also be sat isf ied for the tempera ture  if, in the conditions of the problem,  it 
is  unsteady on the corresponding port ions of the boundary. 

Systematic calculations show that ,  when the indicated conditions are  sat isf ied,  the numer ica l  scheme 
under considerat ion allows calculations to be ca r r i ed  out with t ime step r ~ h. However, it is not always 
possible to c a r r y  out calculations with large values of v. Fo r  example,  in the rapid development of c o n s e r -  
vative motion, which usually occurs  in the initial moments ,  and also in the reorganizat ion of the convective 
s t ruc tu re ,  calculation using large �9 leads to a sharp  increase  in the number  of external  i tera t ions ,  and a 
corresponding inc rease  in the calculation t ime.  In such cases ,  it is bet ter  to use a smal le r  value of v for  the 
calculation. 

It is found that the machine t ime required for the calculation can be very  effectively reduced if, in 
choosing T, the number  of external  i terat ions required  at the preceding t ime layer  is taken into account. If 
at the n- th  l aye r  the number  of i terat ions s l  n is l a rge r  than sop t ,  the t ime step taken at the (n + 1)-th layer  is 
T n+l = 0.TTn. If s l  n -< sopt,  the step is increased:  vn+l = 1.2Tn. If s l n + i i s  l a rge r  than s max,  the step is 
halved; this guarantees  the stabili ty of the calculat ion,  since the onset of instability is preceded,  as a rule,  
by a sharp  inc rease  in the number  of i tera t ions .  Experience shows that,  if the values soP t = 4, smax = 8 are  
chosen,  then on those portions where the solution changes smoothly the p rogram chooses the maximum pe r -  
miss ible  step T ~ h (the l imit  is r < h). The value of T is also regulated by Eq. (15}; if Eq. (15) is not sa t i s -  
fied, the step is recalcula ted according to the formula T n+ 1 = 0.7~n+ 1 

To establish the main features  of the presented numer ica l  scheme,  sys temat ic  calculations were ca r r i ed  
out for  tes t  problems on the convection in a square  region with uniform heating f rom the side [11] and also with 
sinusoidal heating f rom above [12]. In addition, a large number  of numer ica l  experiments  were per formed for 

nonsteady thermoconvect ive-wave problems [13]. 

Monotonic s ta t ionary solutions for  convection with uniform heating f rom the side [11] can be obtained for 
values of Ra up to 10 ~~ The optimal value of the t ime step,  chosen automatically in the course  of the exper i -  
ment ,  depends ve ry  weakly on the spatial  pa r ame te r s  of the gr id ,  which is undoubtedly an advantage of the 
proposed numer ica l  scheme.  For  values of Ra up to 104, the mean optimal value of the t ime step r is found 
to be approximately equal to h. With fur ther  increase  in Ra, the value of ~ chosen in the course  of the exper i -  

ment  drops markedly.  

Investigation of the conservat ive  proper t ies  of the numer ica l  scheme,  using the example of convection 
with sinusoidal heating f rom above [12], shows that for  values of Ra up to 106 on a gr id  with h = 1/20, the ca l -  
culated values of the thermal  fluxes entering and leaving the region differ by no more  than 3%. The noncon- 
servat ive  scheme of [14] gives discrepancies  of the o rde r  of 6-15%. 

Numer ica l  investigation of nonsteady thermoconvect ive-wave problems [13] shows that the scheme r e s -  
ponds very  well to the nonsteady cha rac t e r  of the p roces s .  On those portions where the solution changes slow- 
ly, the maximum permiss ib le  t ime step is chosen,  but where the solution is changing rapidly, the t ime  step is  
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reduced.  By this choice of T, the accuracy  of the solution obtained can be maintained more  uniformly over  
the whole of the calculated t ime in terva l  and, as a resu l t ,  g rea t  economy of the calculations can be achieved. 

NOTATION 

t ,  t ime;  (p, turbulence function; r cu r r en t  function; 0, d imensionless  t empera tu re ;  u, v, x, andy,  com- 
ponents of velocity;  L, scale  of length; AT, cha rac te r i s t i c  t empera tu re  difference;  u, kinematic viscosity;  x ,  
t he rma l  conductivity; g, acce lera t ion  due to gravi ty;  p, thermal -expans ion  coefficient;  ~, d iscre t izat ion step 
for  t ime var iable;  h, d iscre t iza t ion step for  space var iables ;  @~x = (r162 + r  )/h2; n, vec to r  normal  
to sur face ;  a, i te ra t ional  pa rame te r ;  7, smoothing p a r a m e t e r  for  boundary condition on ~0; s ,  number of in t e r -  
nal i teration; s l  number  of external  i terat ion;  er accuracy  of in ternal  i terat ion;  e~,  accuracy  of external  
i terat ion;  P r  =~v/x, Prandt l  number;  Gr  = gflL3AT/v 2, Grashof  number;  Ra = P r G r ,  Rayleigh number;  Ri~l/2 = 
0 .5phMii l , j  I, Reynolds difference number .  
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H E A T - C O N D U C T I O N  P R O B L E M  F O R  A 

M U L T I P L Y  C O N N E C T E D  B O D Y  

V.  S .  K o l e s o v  a n d  S.  Y a .  G i c h e v a  UDC 536.24.02 

A method for  solving a heat-conduction problem for  multiply connected domains is proposed 
based on consecut ive solution of problems for  doubly connected domains.  To provide an ex-  
ample the heat-conduction problem is solved for  a c i r c l e  with two c i r cu l a r  holes.  

In applied mathemat ics  the evaluation of t empera tu re  fields in multiply connected domains is a ve ry  
difficult  problem.  As mentioned in [1] there  is no universa l  analytic method which would ensure  a solution 
to a heat-conduct ion problem.  The possibi l i t ies  of numer ica l  methods are  wide; the i r  implementat ion,  how- 
ev e r ,  meets  with diff icult ies ,  and to overcome them one must ,  as a ru le ,  analyze each problem separa te ly .  
An approach which would reduce  the solution of a heat-conduction problem for  a multiply connected domain 
to the solving of seve ra l  problems of the same kind would, t he re fo re ,  be welcome.  The method proposed 
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