NUMERICAL INVESTIGATION OF NONSTEADY CONVECTION

E. F. Nogotov and A. K. Sinitsyn UDC 536.25

A monotonic conservative finite~-difference scheme of second-order accuracy is proposed
for the numerical investigation of nonsteady thermoconvective processes.

In the computer modeling of nonsteady thermoconvective processes, the choice of the numerical scheme
must satisfy very stringent requirements. Since the solution, as a rule, must be obtained over a long interval
of time, if is very important to choose a numerical algorithm that allows the calculation {o be carried out with
a large time step. Also, to ensure a high accuracy of the solution, the difference scheme must be of a high
order of approximation, not only with respect to the space parameters of the grid, but also with respect to
the time step.

In order to prevent oscillations of the solution during the calculation process, the difference scheme
must be monotonic. Finally, the difference scheme must properly reflect those physical laws which underlie
the initial differential equations, i.e., it must be conservative,

In numerical investigations of thermoconvective processes it is usual to start from the Boussinesq
hypothesis [1, 2] and to consider a system of equations in the eddy velocity ¢, the current function ¢, and the
temperature ¢; in plane Cartesian coordinates, this system takes the dimensionless form
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Here u and v are the x and y components of the velocity vector; t is the time. For distance the scale L was
taken; for temperature, AT; for velocity, v/L; for time, L*/v. Both the Prandtl number Pr = v/% and the
Grashof number of Gr = gBLSAT/v? appear in Egs. (1)-(3) (g is the acceleration due to gravity; 8 is the ther-
mal-expansion coefficient; v is the kinematic viscosity; n is the thermal conductivity).

The system in Egs. (1)~(3) has a solution within a closed region G for definite initial and boundary condi-
tions determined by the specific formulation of the physical problem. At solid impermeable boundaries, for
example, there is the adhesion condition
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For the temperature, conditions of the first, second, and third kinds may be given, and there also junction
conditions. The boundary condition for turbulence is a more complex problem: It cannot be expressed in ex-
plicit form and is satisfied approximately in the course of the calculation.

It must be said that those approaches to determining the turbulence at the boundary which, until recently,
were universal in computing practice led to significant limitations on the stability and made the application of
an economical fractional-step scheme to the solution of Egs. (1)-(4) largely ineffective. Recently, however, a
procedure for calculating the turbulence boundary condition that gives considerably improved accuracy of the
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computational process was proposed [3]. This method significantly increases the efficiency of inexplicit
difference schemes of variable~direction type, and allows them to be used to solve problems of convective
heat transfer [4].

The distinguishing feature of the proposed numerical scheme is that, being of second-order accuracy,
it is monotonic and conservative, and allows calculations to be carried out with 7 ~h. Also, the time step 7
is chosen automatically in the course of the calculation in such a way as to ensure the stability of the computa~
tional process. o

The difference scheme was obtained by using, in a longitudinal—transverse scheme, the monotonic ap~
proximation proposed in [5]. Conservative properties of the scheme were ensured by using the method pro-
posed in [6] for the construction of a steady monotonic conservative scheme of second-order accuracy.

For the model equation
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(where p = const), the difference scheme has the general form -
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The difference operators A, and Ay, approximating the operators L,& = (8/8x)[(1/p) (0 ®/03%x) — u®] and
Ly® = (8/8y)[(1/p) (98/8y) —v&], respectively, are obtained by integrating the latter operators over the ele-
mentary volumes vj(Xj~y/» =X = Xj+/2; Yj-1/2 SV = Yj+1/2 tt < t < t0+), and using the Ostrogradskii formula.
For example, the operator A, &l is
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where Rj.y /2= 0.5phlu?If//22’j lis the Reynolds difference number. The operator Ayén is written analogously.
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The terms Iui /2,5 Vi,i4 /2' are calculated using the mean values
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To solve Eg. (2) in each time layer, a variable-direction iterational scheme is used
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Here o is the iterational parameter; s is the number of the iteration; 3 and Zl); are symmetric three-point
difference operators approximating the derivatives 8%)/0x* and 8%)/8y*, respectively.

The calculational process for determining 9;‘*;, qo;"‘j"*, zb?-'j-i from the known values of these parameters

at the n-th time level is constructed as follows. First, from the difference analog of Eq. (3), the value
is determined; g1 is taken as the initial approximation for ypn+1s0in Eq. (8). Then Eq. (1) is solved in the ’
region G, € G, the boundary of which differs from that of G by one step of the grid. The value of (,oi’:“jL1 on the
boundary of G, is calculated from the difference equation

pn+l
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Inside Gy the value of ¢; i is determined from the difference analog of Eq. (1).

Next, by means of the iterational process in Eq. (9), z[zi”-l is found inside the main region G; at bound-
ary points of the difference grid, the value of ¥ is corrected SO as to satisfy the boundary conditions for i and
8/on. For example, if the adherence condition = 8y/dn = 0 is given at the boundary, then in using & uni-
directional three-point approximation of second-order accuracy
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To refine the values of 9n+1 ¢n+1 ¢n+.1 obtained, an external iterational cycle is constructed. Thus,
the numerical algorithm mcludes two 1terat1onal cycles: the internal and the external. The internal cycle is
terminated by the condition
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The external cycle includes the successive solution of all the equations of the system in Eqs. (1)-(3) until the
inequality
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where sl is the number of the external iteration, is no longer satisfied. Of course, a similar inequality must
be satisfied for the function 6. However, numerical experiments show that the rate of convergence of ¢ is
usually higher than that of ¢, and therefore it is reasonable to assume that when Eq. (14) is satisfied the anal-
ogous inequality for 9 will also be satisfied.

Experience of calculations shows that for Ra = PrGr<{10% it is expedient to set &, ~ 0,01 and €, ~ 0.05.
For smaller ¢, and €_, the time required for the calculation increases sharply, although the solution is prac-
tically unchanged; for larger values, the solution is found to oscillate in the fourth-fifth step. For Ra > 104,
it is better to take &y ~ 0.005 and g ~ 0.01.

The machine time required for the calculation depends significantly on the choice of the iterational parai.~
efer o. In the course of numerical experiments, it was established that the optimal value of ¢ may be rough-
ly caleculated from the formula ¢ =h/5. With this choice of ¢, the required accuracy gy is reached after 5-10
iterations. It would obviously be more expedient to choose iterational parameters optimized according to
Jordan [7, 8], but this choice was not made in the present investigations.

1t is simple to establish that for R;,,/, < 1 the proposed numerical scheme approximates the initial sys-
tem of differential equations in Egs. (1)-(3) with order 0(r® + h?). By summation of the difference equations
over all the points of the calculational grid, it may be established that the scheme is conservative.

The systems of difference equations at each of the stages of the calculational process are solved by trial
and error, The stability of this method is ensured if
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The absence in Eq. (15) of restrictions on the spatial parameters of the grid implies that the difference

scheme is monotonic. Numerical experiments confirm that the scheme remains monotonic for values of Ra up
to 1010 and above.

The stability of the variable-direction scheme in Eq. (6), under the condition of negative determinacy
of the operators Ay and Ay, may be proven using Kellog's lemma [9]. Inthe case under consideration, negative
determinacy of the operators is ensured when Eqg. (15) is satisfied. Hence, the scheme is stable for éach of
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the equations taken individually. However, certain limitations are imposed on 7 because of the approxima-

tion in the boundary conditions for turbulence, which are refined at each time layer. If too large a value of

T is taken, the iterations may diverge even when Eq. (15) is satisfied. This is evidently because the region

of convergence in the considered iterational process is too small: Forlarge 7 the initial approximation, usual-
ly taken as the value of the function at the previous time level, does not fall within this region, and the pro-

cess diverges. To prevent the divergence of the iterational process it is necessary to reduce 7.

Experience of calculations shows that the convergence of the exte‘rnal iteration is much improved by
smoothing out the boundary condition for turbulence, i.e., by writing '
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where 7 is the smoothing parameter. The optimal value of 7 depends on the conditions of the problem and is
close to 0.85 for Ra << 10%; this is in good agreement with the results of [10], where a similar smoothing is
used.

At this point, it is perhaps appropriate to point out that, since the boundary condition for the turbulence
is unsteady, the matching condition on the intermediate layer must be satisfied, i.e., in this case
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Violation of Eq. (17) leads to an increase in the machine time for the calculation by approximately 20%. Of
course, the same condition must also be satisfied for the temperature if, in the conditions of the problem, it
is unsteady on the corresponding portions of the boundary.

Systematic calculations show that, when the indicated conditions are satisfied, the numerical scheme
under consideration allows calculations to be carried out with time step 7 ~h. However, it is not always
possible to carry out calculations with large values of 7. For example, in the rapid development of conser-
vative motion, which usually occurs in the initial moments, and also in the reorganization of the convective
structure, calculation using large T leads to a sharp increase in the number of external iterations, and a
corresponding increase in the calculation time. In such cases, it is better to use a smaller value of 7 for the
calculation.

It is found that the machine time required for the calculation can be very effectively reduced if, in
choosing 7, the number of external iterations required at the preceding time layer is taken into account. If
at the n-th layer the number of iterations s1™ is larger than sOpt, the time step taken at the (n + 1)-th layer is
M+ = 0770, If s1P =< sOPt, the step is increased: 7™0+1 =1.270, If s1P*1ig larger than sMaxX, the step is
halved; this guarantees the stability of the calculation, since the onset of instability is preceded, as a rule,
by a sharp increase in the number of iterations. Experience shows that, if the values sOPt = 4, gmax =8 are
chosen, then on those portions where the solution changes smoothly the program chooses the maximum per-
missible step 7 ~h (the limit is 7 < h). The value of 7 is also regulated by Eq. (15); if Eq. (15) is not satis-
fied, the step is recalculated according to the formula 70+ 1= g,770+1,

To establish the main features of the presented numerical scheme, systematic calculations were carried
out for test problems on the convection in a square region with uniform heating from the side [11] and also with
sinusoidal heating from above [12]. In addition, a large number of numerical experiments were performed for
nonsteady thermoconvective-wave problems [13]. '

Monotonic stationary solutions for convection with uniform heating from the side [11] can be obtained for
values of Ra up to 101°. The optimal value of the time step, chosen automatically in the course of the experi-
ment, depends very weakly on the spatial parameters of the grid, which is undoubtedly an advantage of the
proposed numerical scheme. For values of Ra up to 10%, the mean optimal value of the time step 7 is found
to be approximately equal to h. With further increase in Ra, the value of 7 chosen in the course of the experi~
ment drops markedly.

Investigation of the conservative properties of the numerical scheme, using the example of convection
with sinusoidal heating from above [12], shows that for values of Ra up to 10° on a grid with h = 1/20, the cal-
culated values of the thermal fluxes entering and leaving the region differ by no more than 3%. The noncon-
servative scheme of [14] gives discrepancies of the order of 6-15%.

Numerical investigation of nonsteady thermoconvective-wave problems [13] shows that the scheme res-
ponds very well to the nonsteady character of the process. On those portions where the solution changes slow-
ly, the maximum permissible time step is chosen, but where the solution is changing rapidly, thetime stepis
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reduced. By this choice of 7, the accuracy of the solution obtained can be maintained more uniformly over
the whole of the calculated time interval and, as a result, great economy of the calculations can be achieved.

NOTATION

t, time; ¢, turbulence function; ¥, current function; 8, dimensionless temperature; u, v, x, andy, com-
ponents of velocity; 1, scale of length; AT, characteristic temperature difference; v, kinematic viscosity; «,
thermal conductivity; g, acceleration due to gravity; 5, thermal-expansion coefficient; 7, discretization step
for time variable; h, discretization step for space variables; Ve = @i+1, j-—zz/)i’ jF Pimg, j)/hz; n, vector normal
to surface; o, iterational parameter; 7, smoothing parameter for boundary condition on ¢; s, number of inter-
nal iteration; sl number of external iteration; gy, accuracy of internal iteration; €y, accuracy of external
iteration; Pr = v/x, Prandtl number; Gr = gL3AT/v?, Grashof number; Ra = PrGr, Rayleigh number; Ry, /2=
O.5ph|uii1, j !y Reynolds difference number,
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HEAT-CONDUCTION PROBLEM FOR A
MULTIPLY CONNECTED BODY

V. S. Kolesov and S. Ya. Gicheva UDC 536.24.02

A method for solving a heat-conduction problem for multiply connected domains is proposed
based on consecutive solution of problems for doubly connected domains. To provide an ex~
ample the heat-conduction problem is solved for a circle with two circular holes.

In applied mathematics the evaluation of temperature fields in multiply connected domains is a very
difficult problem. As mentioned in [1] there is no universal analytic method which would ensure a solution
to a heat-conduction problem., The possibilities of numerical methods are wide; their implementation, how-
ever, meets with difficulties, and to overcome them one must, as a rule, analyze each problem separately.
An approach which would reduce the solution of a heat-conduction problem for a multiply connected domain
to the solving of several problems of the same kind would, therefore, be welcome. The method proposed
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